
2930 Journal of The Electrochemical Society, 147 (8) 2930-2940 (2000)
S0013-4651(99)12-086-X CCC: $7.00  © The Electrochemical Society, Inc.

* E-m
The Impedance Response of a Porous Electrode Composed of
Intercalation Particles
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A mathematical model is developed to describe the impedance response of a porous electrode composed of spherical intercalation
particles. The model considers a porous electrode without solution-phase diffusion limitations. The model is developed by first
deriving the impedance response of a single intercalation particle, obtained by solving a set of governing equations which describe
charge-transfer and double-layer charging at the surface, solid-phase diffusion inside the particle, and an open-circuit potential
which varies as a function of intercalant concentration. The model also considers the effect of an insulating film surrounding the
particle. The governing equations are linearized to take advantage of the small amplitude of the perturbing current in impedance
analysis. Once the impedance of a single particle is determined, this result is incorporated into a model which describes a porous
electrode limited by ohmic drop in the solution and solid phases, and by the impedance of the particles of which the porous elec-
trode is composed. The model can be used to examine the effect of physical properties and particle-size distributions in the porous
electrode, and the usefulness of impedance analysis to measure solid-phase diffusion coefficients is scrutinized.
© 2000 The Electrochemical Society. S0013-4651(99)12-086-X. All rights reserved.
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Electrochemical impedance spectroscopy (EIS) is a technique
consisting of the application of a small perturbing current or voltage
to an electrochemical system and measuring the response of the sys-
tem. The response of the system can be described as an impedance,
Z, which is the ratio, or transfer function, of the voltage to the cur-
rent. Because the perturbation is small, the response of the system is
linear, and the same transfer function should result whether the
applied signal is a potential difference or a current. Because some
processes are related to the time derivatives of potential and concen-
tration rather than upon the magnitude of the variables themselves,
some part of the system response will be in-phase with the perturba-
tion (a real component), and some part will be out-of-phase with the
applied signal (an imaginary component). The designations “real”
and “imaginary” come from the mathematical notation of writing a
periodic signal with frequency v as the magnitude of the signal mul-
tiplied by the real part of the exponential of jvt.

The impedance responses of electrochemical systems have been
described in the past as an arrangement of ideal equivalent-circuit
elements. Simple lumped-parameter circuits and more complex
finite-transmission-line circuits have been used in the past, but the
disadvantage of this approach is the difficulty in interpreting the
equivalent-circuit parameters in terms of fundamental properties. In
this paper, the impedance is determined by describing mathemati-
cally the fundamental physical processes which govern the response
of the system. This approach has been taken for many electrochem-
ical systems to describe the impedance response.1-5 This phenome-
nological approach to modeling is taken in this paper and combined
with porous electrode theory6-8 to describe the impedance of an elec-
trode composed of spherical intercalation particles, where the inter-
facial processes and ohmic drop in the electrode act to distribute the
reaction rate throughout the depth of the electrode.

By describing the impedance of a single intercalation particle as
a function of frequency, one can gain insight into the interpretation
of EIS experiments for the measurement of fundamental physical
properties, and the impedance of a single particle can be incorporat-
ed into a model which describes the response of an entire porous
electrode and an entire battery system. This will aid in the evaluation
of results of EIS experiments as a diagnostic technique for the devel-
opment of novel batteries.
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Mathematical Model
We describe the impedance response of a system by solving the

governing equations subject to the condition that the current is a
sinusoidally varying signal with frequency v and amplitude I. Each
variable which is relevant to the description of the system can be
resolved into a term which corresponds to the dc response of the sys-
tem and another term which is governed by the perturbing signal.
For a system variable X, one can write

X 5 XuDC 1 Re[X
~

e jvt] [1]

where XuDC is the value of X evaluated under steady-state conditions
in the absence of a perturbing signal. The perturbation is small
enough that the response of the system can be considered linear.
Higher-order terms are neglected

[2]

For perturbations about a steady state at open circuit, one can neglect
the time variation of the dc component and write

[3]

A diagram of the system under consideration is shown in Fig. 1. A
spherical particle is surrounded by a resistive film. One must con-
sider charge transfer and double-layer charging across each inter-
face, as well as the possibility of ohmic film resistance and separa-
tion of charge across the film.

At any interface, the faradaic current density is related to the
potential drop across the interface by the Butler-Volmer equation

[4]

This equation is applied at each interface; in this formulation, F1
refers to the potential in the phase which is closest to the electronic
conductor and F2 refers to the potential in the phase which is clos-
est to the ionic conductor. U is the open-circuit potential (OCP) of
the charge-transfer reaction. It is the value of the potential difference
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F1 2 F2 when the reaction is equilibrated. The term in parentheses,
(F1 2 F2 2 U), is a surface overpotential and quantifies the degree
to which the interface is removed from equilibrium. The constant i0,
the exchange current density, is a kinetic constant which determines
the rate of the reaction when the system is removed from equilibri-
um. Strictly speaking, this constant depends upon local concentra-
tions at the interface. If the system is being perturbed about equilib-
rium conditions, however, the exponential terms sum to zero, and the
change in the value of the exchange current density with local con-
centrations does not matter, since the perturbation in this quantity is
multiplied by a term which sums to zero.

There is also a current density which develops from the charging
and discharging of the electrochemical double layer at the interface
surrounding each particle

[5]

These faradaic and nonfaradaic current densities can be added
together to yield the total current density crossing the interface.
These current densities are considered to be additive and to have no
effect on one another, as was first posed by Grahame in his work9

in,interface 5 in,faradaic 1 in,dl [6]

With the presence of an insulating film surrounding the particle,
we allow for a resistive current density across the film

F1f 2 F2f 5 in,filmRfilm [7]

where the subscript f indicates that the quantity described is the
value of the quantity in the film at the numbered interface.

For the separation of charge across the dielectric of the film

[8]

The capacity of the film is described by a simple dielectric

[9]

where e is the permittivity of the film and hfilm is the thickness of the
film. The capacity of the film is probably very small, but if the film
is a dielectric, it is possible to separate charge across it. Only at very
high frequency will there be significant current flowing due to sepa-
ration of charges across the film, resulting in “shorting” of the resis-
tance of the film.
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Figure 1. Schematic diagram of intercalation particle, with a detailed picture
of the particle-film and film-solution interface and an equivalent-circuit dia-
gram of the interfaces.
The total outward normal current density is equal to the sum of
these partial current densities

in 5 in,film 1 idl,film [10]

Solid-phase diffusion and capacity limitations.—Transfer func-
tion between faradaic current and surface concentration.—The im-
pedance response of a simple particle, such as a metal whose com-
position does not change with the passage of current, is sufficiently
described in the previous section. If, however, there is a change in
the OCP, U, as a function of the intercalant concentration in the par-
ticle, then one must perform a mass balance to determined the con-
centration of material in the particle, in order to determine how the
OCP varies with the passage of current.

The diffusion of species in the particle is assumed to obey Fick’s
law. This can be shown to be valid even if the mobile intercalant
species is charged, provided that the electronic mobility is much
greater than that of the intercalant species

Nintercalant 5 2Ds=cs [11]

where Nintercalant is the flux of the intercalant species, Ds is the dif-
fusion coefficient of the intercalant in the particle, and cs is its con-
centration. This expression for the flux yields the material balance in
spherical coordinates

[12]

where r is the radial position in the spherical particle. We can also
relate the concentration gradient at the particle’s surface to the inter-
facial faradaic current density

[13]

That is, the flux of intercalant out of the particle is related to the
faradaic current density by Faraday’s law. Note that only the farada-
ic component of the total interfacial current density is related to a
concentration gradient in the solid particle, because no intercalation
material crosses the interface for current density due to double-layer
charging. Strictly speaking, the charge in the double layer is due to
surface excess charge, which may be due to both intercalant and the
electronics in the solid, but it is assumed here that the excess charge
in the double layer is due to electrons only.

Let us consider the concentration change in the solid intercalant
particle as a function of the perturbing signal and frequency. Equa-
tion 12 can be rewritten for perturbations from a steady-state value

[14]

This differential equation has the solution

[15]

where r 5 r/Rs an Vs 5 vRs
2/Ds.

The OCP of the intercalation reaction depends upon the concen-
tration of intercalant at the surface of the particle. For convenience,
we define c~surface, the concentration of intercalant at the surface of
the particle

c~surface ; c~sur5R [16]

Then the surface concentration is related to the interfacial faradaic
current density
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[17]

We define the dimensionless transfer function Ys

[18]

Change in OCP with passage of current.—The transfer function
relating the concentration perturbation to the magnitude of the fara-
daic current density can now be incorporated into the Butler-Volmer
equation to determine the impedance of the faradaic reaction at the
particle/film interface. Linearization of the Butler-Volmer equation
about open-circuit conditions gives

[19]

The following definitions

[20]

allows us to write the relationship between the faradaic current den-
sity and the potential across the interface as

[21]

The impedance for the faradaic reaction is defined as the ratio of the
potential across the interface to the faradaic current density

[22]

This expression can be resolved into real and imaginary compo-
nents with the identities

[23]

and, from Abramowitz and Stegun10

[24]

but the resulting expressions are not particularly enlightening, and
care must be taken in evaluating them. The real and imaginary com-
ponents can be tricky to evaluate numerically due to the differences
between very small or very large quantities in the expansions. Rather
than focusing on these large expressions and the details of calculat-
ing them numerically, we evaluate some limiting cases which are ap-
propriate to use in various frequency ranges.

Limiting cases: moderately high frequencies.—We can also examine
the limiting cases. In the limit as Vs >> 1, tanh(!wjVs) r 1.10 If one
considers moderately high frequencies, at which tanh(!wjVs) < 1 but
Vs is not much greater than unity, one obtains the following result
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[25]

The admittance in this frequency range can be written as

[26]

Equations 25 and 26 give the result for the diffusion impedance
when the frequency is small enough that the curvature of the parti-
cle affects the penetration depth, but not so small that this penetra-
tion depth reaches the center of the particle.

Limiting cases: high frequencies.—If Vs is large enough, it is possi-
ble to neglect entirely the hyperbolic tangent term and retain only the
highest-order terms in Vs. This yields the limit of the semi-infinite
Warburg impedance, as was derived for a planar film by Ho et al.1

In this limit, the diffusion length scale is much less than the dimen-
sion of the particle

[27]

Limiting case: low frequencies.—We can also examine the limit as
Vs r 0. These are cases where the time constant is sufficiently large
that diffusion processes can access the entire depth of the particle.
These results are similar to those found in the work of Armstrong11

and Jacobsen and West.12 The Taylor series expansion for tanh y is10

[28]

After an expansion of Zfaradaic, we find

[29]

Alternatively, this can be written as

[30]

where

[31]

Or as an admittance
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[32]

This low-frequency limit corresponds to the case when the frequen-
cy is so low that the particle behaves like a capacitor. The passage of
current draws material from the particle, and, in this low-frequency
range, the change in concentration corresponds to a depletion of the
total amount of intercalant inside the particle rather than to a con-
centration profile which penetrates only partway into the particle. It
is not the complete depletion of the particle, but rather the emptying
of the particle to the extent possible given the change in OCP with
particle concentration. We see that Cpart, the capacity per unit area,
is the product of the ratio of particle volume to area (Rs/3), multi-
plied by the capacity of the solid material per unit volume of solid
material. It is worthwhile to note that the capacitive response, gov-
erned by Cpart, exists even when the solid-phase diffusion coefficient
is infinite, because while Rpart is inversely proportional to Ds, the
capacity of the particle, corresponding to the amount of active mate-
rial stored within it, is independent of Ds.

Overall single-particle impedance.—The results of the previous
section describe the impedance of the faradaic reaction at the
film/solution interface. The structure of the particle and film shown
schematically in Fig. 1 indicates that there are additional paths through
which current might flow and additional resistances which impede the
passage of current. These additional impedances and admittances
must be considered to describe the overall particle impedance.

First we consider the charging of the double layer at the parti-
cle/film interface

i~dl,1 5 jvCdl,1(F
~

1 2 F
~

1f) [33]

Writing the total interfacial current density as the sum of the farada-
ic and double-layer-charging current densities, we find

[34]

Neglecting the variation of OCP on the concentration of intercalant in
the film or in solution, we write the relation between current density
across the interface and the potential difference at the outer interface

[35]

Incorporating the ohmic resistance of the film from Eq. 7, we can
sum these impedances to find the transfer function between current
density through the film and the potential difference between the
solid particle and the adjacent solution
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Finally, we can add this current density to the current density which
flows as a result of charging the film capacitance (from Eq. 8) to
relate the total current per unit interfacial area to the potential dif-
ference between the solid and solution

I
~

n 5

[37]

We can express this transfer function either as an admittance, Y 5
I
~

n/(F
~

1 2 F
~

2), or as an impedance, Z 5 (F
~

1 2 F
~

2)/I~n.

Characteristic time constants.—In the examination of the case of
a single intercalation particle without an insulating film, there are
several discernable time constants which are relevant to the process-
es which occur in the particle. The first of these is the resistive-
capacitance (RC) time constant which characterizes the frequency
range over which the current at the interface is shifted from purely
capacitive to purely resistive

vRC 5 (Rct,1Cdl,1)21 [38]

The time constant which is relevant to solid-phase diffusion over the
length scale of the particle radius is given by the ratio of the solid-
phase diffusion coefficient to the square of the particle radius

[39]

In the high-frequency limit of solid-phase diffusion, Eq. 27 shows
that there is not a characteristic time constant for this result; the im-
pedance is proportional to a constant multiplied by v21/2, and there
is no maximum in the impedance corresponding to a particular fre-
quency. If, however, one wishes to consider the frequency at which
the solid-phase diffusion in this high-frequency limit is comparable
to the charge-transfer resistance, one can determine the frequency
below which the ratio of Rpart/!w2Vs to Rct,1 is greater than 5%, which
yields a time constant

[40]

Finally, one can calculate a time constant for the low-frequency
capacitive limit of the particle. This does not constitute a transition
frequency, as the resistance and capacitance are in series, while the
charge-transfer resistance and double-layer capacitance are in paral-
lel, but at v 5 vRCpart, where

[41]

the imaginary component of the capacitive limit has the same mag-
nitude as the real component of that limit. These time constants are
tabulated and included with the physical properties in Tables I-III.
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Porous Electrodes
Particle-size distribution.—Once we have determined the imped-

ance response of a single particle, we can combine this transfer func-
tion with a description of the porous electrode. We can write a bal-
ance on the fractrion of total current flowing in solution to find that

[42]

where N(rj) is the number of particles per unit volume of electrode
with a radius rj, 4prj

2 is the surface area per particle, and I~n(rj) is the
normal current per unit surface area of a particle of that size. The
general form of I~n is a function of the potential difference between

∂
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˜
( ) ˜ ( )
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x
N r r I r

j

n
2 45 ∑ j j

2
jp

Table I. Electrode parameters for use in single-particle
simulations, with insulating film and charge-transfer resistance
at film-solution interface. This is the most complicated interface
and includes nonzero values for all the parameters necessary to
describe the full particle shown in Fig. 1.

Property Value

Cdl,1 0010 mF/cm2

i0,1 0000.69 mA/cm2

aa 1 ac 0001
T 0353.15 K
Rct,1 0044.06 V cm2

00
20.27 V cm3/mol

Ds 0001.0 3 1029 cm2/s
Rs 0002.0 mm
Rpart 0042.021 V cm2

Rfilm 1100 V cm2

Cfilm 0010 pF/cm2

Rct,2 0004.4 V cm2

Cdl,2 0010 mF/cm2

vRC 0361 Hz
vD 0000.724 Hz
vpart 0003.98 mHz
vRCpart 0009.56 mHz

2
∂
∂

U

cs







Table II. Parameters for use in single-particle simulations, with
an insulating film but without an external interfacial impedance
and without electrochemical double-layer capacitance.

Property Value

Cdl,1 0000
i0,1 0028.2 mA/cm2

aa 1 ac 0001
T 0298 K
Rct,1 0000.91 V cm2

00
27.69 V cm3/mol

Ds 0003.9 3 10210 cm2/s
Rs 0012.5 mm
Rpart 0919.8 V cm2

Rfilm 1100 V cm2

Cfilm 0020 mF/cm2

Rct,2 0000
Cdl,2 0000
vRC 0 —
vD 0008.12 Hz
vpart 0003.97 3 1025 Hz
vRCpart 0003.74 mHz

2
∂
∂

U

cs






the solid and solution, as given by Eq. 37. Defining Y(rj) as the trans-
fer function which relates the outward normal current density per
unit surface area of a particle to the potential difference, we write

[43]

A schematic diagram which represents the structure of the porous
electrode is shown in Fig. 2. The flow of current from one phase to
another is shown schematically in Fig. 3. The flow of current across
the interface of the particle allows the current to move from the solu-
tion phase to the solid phase as one traverses the length of the porous
electrode.

This can be generalized to consider a continuous particle-size
distribution function. With N(r)dr being the number of particles per
unit volume of composite electrode with a radius between size r and
r 1 dr, we can write that

∂
∂

˜
( ) ( ) ( ˜ ˜ )

i

x
N r r Y r

j

2
1 245 2∑











j j

2
jp F F

Table III. Parameters for use in single-particle electrode
simulations. This is the simplest form of the particle under
consideration. There is no insulating film and, consequently,
only the faradaic and double-layer charging processes
contribute to the overall impedance.

Property Value

Cdl,1 0010 mF/cm2

i0,1 0000.69 mA/cm2

aa 1 ac 0001
T 0353.15 K
Rct,1 0044.06 V cm2

00
20.27 V cm3/mol

Ds 0001.0 3 1029 cm2/s
Rs 0002.0 mm
Rpart 0042.021 V cm2

Rfilm 0000
Cfilm 0000
Rct,2 0000
Cdl,2 0000
vRC 0361 Hz
vD 0000.724 Hz
vpart 0003.98 mHz
vRCpart 0009.56 mHz

2
∂
∂

U

cs







Figure 2. Schematic diagram showing the construction of a porous electrode
consisting of spherical particles.
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[44]

where a is the interfacial surface area of the particles per unit volume
of electrode and es is the volume fraction of solid in the composite
electrode. Then

[45]

The quantity waY is the interfacial admittance per unit volume of elec-
trode, averaged over the particle-size distribution. Equation 45 re-
lates the divergence of the solution-phase current to the local po-
tential difference between solid phase and solution phase.

For this work, we propose a distribution of the form

[46]

where c is a parameter which determines the sharpness of the distri-
bution. This function is a Gaussian distribution in the logarithm of
the particle size. Defining the distribution in this way allows one to
select values of the specific surface area a and the volume fraction
of solid material es and vary only the breadth of the distribution.

It can be shown that c 5 !w(ln (wra/3es), where wr is the mean par-
ticle radius, averaged over the particle size distribution

[47]

The values of a and es can be determined from experiment, and one
can then explore the affect of various particle-size distributions
which yield the determined values of a and es. Graphs of the area
distribution and volume distribution for several values of the para-
meter c are shown in Fig. 4. As c approaches zero, the distribution
functions approach the limit of a delta function.

Impedance of porous electrodes.—In the porous electrode, we
consider total current, I

~, to equal the current carried in the solution
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Figure 3. Schematic diagram showing the differential flow of current in a
porous electrode in which current can flow in both the solid and solution
phases.
phase, i~2, plus the current carried in the solid conducting phase.
Ohm’s law is obeyed in each phase. In this paper, we neglect the con-
centration variations in the solution phase which result from small
diffusion coefficients or nonunity transference numbers

[48]

Combining this expression with our current balance (Eq. 45) and
making the position variable dimensionless with the thickness of the
porous electrode L, we find

[49]d

d

L L
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2 1 2 1 2
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Figure 4. Diagram showing contribution to total specific surface area and
total volume of particles for various values of c in N(r)dr. The function
becomes a delta function as c r 0.
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where waY is the average admittance of all particles in the composite
electrode, as given in Eq. 45. This differential equation is solved sub-
ject to the boundary conditions

i~2 5 I
~ at z 5 0

[50]
i~2 5 0 at z 5 1

that is, all the current is carried in solution at the separator/porous
electrode interface, and all the current is in the solid phase at the cur-
rent collector. This has the solution

[51]

where

[52]

Equations 51 and 52 are satisfying because they reveal the extension
of the solution for linear kinetics set forth by Newman.13 In the
example provided in Ref. 13, waY is simply represented by a i0F(aa 1
ac)/RT, the faradaic impedance for simple linear kinetics.

The result shown here is more general and allows one to specify
a general form for the particle admittance and particle-size distribu-
tion. If the admittance of the particle is dictated only by charge trans-
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Figure 5. Schematic diagram of the cases considered for simulations of sin-
gle intercalation particles. Case 1 is the most general case, shown schemati-
cally in Fig. 1, and it includes both internal and external interfacial imped-
ances, as well as a resistive film. Case 2 neglects the external interfacial im-
pedance and the internal double layer. Case 3, the simplest case which is con-
sidered, neglects the insulating film entirely. Values for the parameters are
shown in Tables I-III.
fer, Eq. 52 reduces to the form set forth in Ref. 13. See also Ong and
Newman14 for a similar result for the transient response of a porous
electrode with double-layer capacitance included.

Results and Discussion
We solve the equations to determine the impedance response first

of a single particle and then of a porous electrode composed of these
particles. For the impedance response of single particles, we consid-
er first the full case shown in Fig. 1 (case 1 in Fig. 5). After noting
the general features of the impedance spectra, we attempt to exam-
ine the system in greater depth by next considering a system without
an external interfacial impedance (case 2 in Fig. 5). Finally, we con-
sider a particle without an insulating film (case 3 in Fig. 5). This sim-
plest case is the particle which shall be incorporated into the porous
electrode model to examine the effect of a reaction rate which be-
comes distributed throughout the depth of the electrode by a balance
of the particle impedance with the ohmic drop. The physical proper-
ties of the particles are shown in Tables I-III. The relevant properties
of the porous electrode are listed in Table IV.

First, we consider the most general description of the impedance
spectrum of a single particle: a particle with an insulating film and
an external interfacial impedance as well. The results are shown in
Fig. 6 and 7. Figure 6 shows the impedance of a single particle plot-
ted in a complex-plane graph; Fig. 7 shows the results of magnitude
and phase angle plotted vs. frequency of the applied signal. We have
adopted the notation that Z9 is the real portion of the complex imped-
ance; Z0 is the imaginary portion.

Table IV. Electrode parameters for use in porous electrode
simulations. Other parameters are the same as in Table III
unless otherwise noted.

Property Value

es 0000.5
a 7500 cm21

L1 0100 mm
k 0055 mS/cm
s 0001.0 S/cm

Figure 6. Complex-plane plot of impedance of a single particle for case 1:
interfacial impedance with insulating film and solid-phase diffusion and
outer interfacial impedance.
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There is overlap of the time constants of the charging of the two
double layers, and at sufficiently high frequencies the capacitance of
the film shorts the film resistance. There is sufficient difference be-
tween the time constants for diffusion and for double-layer charging
that the impedance lies on the real-axis for a significant range of
intermediate frequencies. For frequencies between approximately
100 mHz and 100 Hz, the impedance response varies little; none of
the processes has time constants in this frequency range.

It is difficult to distinguish among the double-layer and film
capacitances in this case; many of the processes occur with similar
time constants such that the impedance spectra resemble a resistor
and capacitor in parallel (the film’s resistive and capacitive charac-
teristics), both of which are in series with the capacitance of the par-
ticle. There is a shoulder on the low-frequency end of the RC loop,
but relevant information cannot be gleaned from this detail.

Let us consider next a simpler system by examining a particle
with a film but without an internal double layer and without external
interfacial impedance. The values shown in Table II are typical val-
ues used in lithium-battery simulations for carbon electrodes.14,15

Here we have charge-transfer and film resistance, along with solid-
phase diffusion resistance, which is shorted at higher frequencies by
the capacitance of the film. Data for these simulations are given in
Fig. 8 and 9. Here the time constant for the film capacitance in par-
allel with the faradaic impedance is not completely separated from
that for particle diffusion; the impedance does not return all the way
to the real-axis at intermediate frequencies. Some of the general fea-
tures of single-particle impedance are more clear in this example.
There is the parallel-RC loop at high frequencies, and the impedance
is dominated by diffusive elements and, eventually, the capacity of
the particle capacitance at much lower frequencies.

In order to study these effects further, we simplify the system
even further by examining a particle without an insulating film. Fig-
ure 10 includes plots of the impedance of the particle using the val-
ues of the parameters shown in Table III and also results for two
other values of Ds. The effect of Ds on the impedance is discussed
below. Figure 11 shows clearly the capacitive behavior of the parti-
cle. The interfacial current is purely capacitive at high frequencies;
lack of a solution-phase ohmic or diffusional impedance in series

Figure 7. Phase angle and magnitude of complex single-particle impedance
for case 1: interfacial impedance with insulating film and solid-phase diffu-
sion and outer interfacial impedance.
with the interface forces the phase angle back to 908 in the high-fre-
quency limit as the current becomes purely capacitive. One can be a
slope of 21 at sufficiently low frequencies in the magnitude vs. fre-
quency plot of Fig. 11, but there is not sufficient resolution of the
time constants to resolve a separate slope of 21/2 for diffusive con-
trol for the case where Ds 5 1 3 1029 cm2/s.

The standard RC semicircle is evident at high frequencies, where
the charge-transfer resistance and double-layer capacitance are in
parallel. At lower frequencies, the double layer becomes blocking,

Figure 8. Complex-plane plot of impedance of a single particle for case 2:
interfacial impedance with insulating film and solid-phase diffusion; no outer
interfacial impedance or inner double layer.

Figure 9. Phase angle and magnitude of complex single-particle impedance
for case 2: interfacial impedance with insulating film and solid-phase diffu-
sion; no outer interfacial impedance or inner double layer.
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and all the current flows through the faradaic path. As the frequency
is decreased even more, the solid-phase diffusion impedance be-
comes the most pronounced feature, and at even lower frequencies,
the capacity of the solid particle dominates. Although the time con-
sants for the double-layer and solid-phase diffusion differ by approx-
imately three orders of magnitude (cf. Table III), the two processes
are not completely resolved in the sense that the impedance does not
return all the way to the real-axis as we decrease the frequency from
vRC before the imaginary component increases in magnitude as dif-
fusive processes become more important. The different contributions

Figure 10. Complex-plane plot of impedance of a single particle for case 3:
interfacial impedance with solid-phase diffusion limitations but no insulating
film. Also shown in the figure are results for two different values of the solid-
phase diffusion coefficient Ds.

Figure 11. Phase angle and magnitude of complex single-particle impedance
for case 3: interfacial impedance with solid-phase diffusion limitations but no
insulating film.
to the overall impedance also depend upon the frequency in differ-
ent ways (the RC loop decreases roughly linearly with v on the low-
frequency side of the loop and the diffusion impedance increases
with v21/2), and there can still be overlap despite the separation of
the time constants.

It is important to note that in the cases considered here, the fre-
quency which is characteristic of diffusion in the particle (vpart) is
smaller than the frequency which is characteristic of the capacity of
the particle (vRCpart). The results of Eq. 30 and 32 are limiting cases
for the low-frequency limit, but diffusive effects are still important at
the frequency where the imaginary component of the low-frequency
limit is the same size as the real component. When the frequency is
equal to vRCpart, then the impedance is not given by the limiting form
expressed by Eq. 30. This capacitive limit is reached eventually but
at frequencies still lower than vD.

Figure 10 also shows the effect of changing the solid-phase dif-
fusion coefficient on the impedance of a single intercalant particle.
The figure reveals that for the base case, for a diffusion coefficient
of 1 3 1029 cm2/s, there is overlap of the interfacial process and
solid-phase diffusion. The double layer is still not completely block-
ing at frequencies low enough that the solid-phase diffusion process
contributes significantly to the impedance of the particle.

If the solid-phase diffusion coefficient is decreased by two orders
of magnitude to 1 3 10211 cm2/s, the frequency below which the
solid phase becomes controlling is also decreased by a factor of 100,
but this change increases the magnitude of the solid-phase diffusion
impedance according to Eq. 27. Even though the time constant is
shifted to imply a greater resolution of frequencies, the magnitude of
the solid-phase-diffusion impedance is increased so that it interferes
with the charge transfer and double-layer impedance even when v is
much greater than vpart. When the diffusion coefficient is increased
to 1 3 1027 cm2/s, the diffusive component of the particle im-
pedance is lowered, and the response approaches the limit of purely
capacitive behavior in the solid particle.

Figure 12 displays the effect of changing the slope of the OCP of
the particle with respect to intercalant concentration. Changing this
parameter does not change the relevant time constant for diffusion in
the particle, but it does change the magnitude of the solid-phase im-

Figure 12. Complex-plane plot of impedance of single particle: effect of
slope of OCP. (—) The slope of OCP which corresponds to the value in
Table III.
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pedance, as indicated by Eq. 20, and therefore shifts the frequency at
which the diffusion impedance in the solid is comparable in magni-
tude to the charge-transfer resistance. We note that there is no solid-
phase impedance in the case where the slope of the OCP is zero. All
the impedance of the particle, in this case, is determined by the
charge-transfer resistance and the capacitance of the double layer.

Limiting cases: diffusion control.—For the base case without an
insulating film, examination of the asymptotes describes previously
shows that for both the real and imaginary components of the diffu-
sion impedance, the high-frequency limit of the solid-phase-diffu-
sion impedance varies as v21/2. The simulation result and this
asymptote are plotted in the upper graph of Fig. 13, but we note that
the double-layer capacitance at high frequencies and the other terms
in Eq. 25 obscure the diffusion impedance at small values of v21/2

(large values of v) due to the overlap of time constants.
The slopes of the real and imaginary components of the imped-

ance are independent of particle size. This result should provide a
way to determine the solid-phase diffusion coefficient Ds even if the
particle size is not known. The interference of the interfacial imped-
ance, however, restricts the range of applicability of this asymptote
and can make it difficult to determine diffusion coefficients in this
manner. The difficulty of measuring diffusion coefficients with im-
pedance data is discussed further in a paper by Doyle et al.16

Limiting cases: low-frequency limit.—We also examine the low-
frequency limit where solid-phase capacity dominates the impedance
in the lower graph in Fig. 13. This result does yield the purely capac-
itive response at very low frequencies, but the imaginary component
of the impedance in this limit provides no information about the solid-
phase diffusion coefficient (cf. Eq. 30). This limit is obtained only at
very low frequencies, in the millihertz range for the simple case, for
example. These frequencies are probably not, in general, experimen-
tally accessible, because the filling of the intercalation particle (the
process under consideration) can be obscured by side reactions and
other processes occurring in the cell with similar time constants.

Figure 13. Asymptotic limits of solid-phase diffusion impedance. Results
shown are for case 1: no insulating film and no outer interface.
Effect of porous electrodes.—We have examined the behavior of
a single particle, and examined the limiting forms of the impedance
response for a particle without an insulating film. The impedance
response of a single particle can then be incorporated into Eq. 51 to
determine the impedance of a porous electrode composed of a con-
tinuum of these particles for a variety of particle-size distributions.
The results of these simulations are shown as complex-plane plots in
Fig. 14 and as plots of magnitude and phase angle vs. frequency in
Fig. 15. Since the specific surface area a is prescribed and the
charge-transfer and double-layer impedance depend only upon the
surface area of the particle, the impedance at high frequencies is in-
dependent of the particle-size distribution. At lower frequencies,
when the solid-phase diffusion limitations become important, we see
that the particle-size distribution becomes very important. Figure 14
shows a complex-plane plot of the porous electrode impedance on
two different scales for the impedance properties indicated by
Table III and the electrode properties shown in Table IV.

Figure 14. Complex-plane plots of the impedance of a porous electrode for
various particle-size distributions. The lower figure is an expanded view.
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At the high-frequency limit, there is clearly a 458 asymptote orig-
inating from the real-axis. This is not due to diffusional effects (the
Warburg impedance yields a 458 in the high-frequency limit as well).
Rather, this limit is due to the fact that the interfacial impedance is
purely capacitive (imaginary) at high frequencies and the overall
impedance is distributed throughout the porous electrode. Equations
51 and 52 dictate how the interfacial impedance at high frequencies
is distributed throughout the porous electrode, subject to the ohmic
resistance of the solid and solution. Since the square root of a com-
plex number has a phase angle equal to one-half the phase angle of
the argument, the impedance, which is purely capacitive (phase
angle 908) in the high-frequency limit, yields a distributed imped-
ance with a 458 line. Indeed, the entire RC interfacial impedance,
which is a semicircle for the single particle, yields a “squashed”
semicricle when the impedance is distributed according to the ohmic
drop in the porous electrode.

Also shown in Fig. 14 is a plot of the impedance for a porous
electrode with the same particle properties in Table III but with infi-
nite solid-phase and solution-phase conductivities (k, s r `). When
there is no ohmic drop in the solid phase or in solution, the electrode
is uniformly accessible. The distributed nature of the impedance
results in just an enhancement of the available surface area. Rather
than passing current through only a single particle, current passes
through all of the particles in the porous electrode without any addi-
tional ohmic drop. Clearly the ohmic drop in the solution phase for
the system described by the values in Tables III and IV greatly
affects the overall impedance of the porous electrode, increasing its
magnitude and decreasing its phase angle. The porous electrode can
also be made more accessible by making it very thin. Constructing a
very thin electrode can be useful in reducing the ohmic effects and
recapturing the expression for the impedance given for a single par-
ticle, with an enhancement of the available surface area. In this way,

Figure 15. Bode plots of impedance of porous electrode for various particle-
size distributions.
one might be able to use the results of Eq. 27 to determine solid-
phase diffusion coefficients.

It is clear that the breadth of the particle-size distribution affects
the solid-phase diffusion impedance except in its high-frequency
limit, as described by Eq. 27. This limiting case for diffusion is inde-
pendent of the particle-size distribution as long as a is known. It could
be used to determine the diffusion coefficient in the solid, provided
that it is possible to resolve the high-frequency diffusion limit and the
interfacial impedance. As shown in Fig. 14 and even in the single-par-
ticle simulations in Fig. 10 and 12, there is sometimes incomplete res-
olution of these two processes, making it difficult to determine the
solid-phase diffusion coefficient in this manner. The low-frequency
limit yields no useful information about the diffusion coefficient in
the solid unless the particle-size distribution is well known.

Conclusions
The impedance response of a single intercalation particle is

developed and can provide information about fundamental proper-
ties of the charge-transfer, double-layer, and solid-phase diffusion
processes. One can also consider the effects of an insulating film and
an additional impedance at the external film/solution interface.

When incorporating the admittance of a single particle into a
model which describes the response of a porous electrode, one can
still determine information about the charge-transfer and double-
layer properties of the interface, and about the solid-phase diffusion
coefficient Ds. The limiting forms of the solid-phase impedance can
provide useful means of plotting the impedance to determine the
solid-phase diffusion coefficient Ds, but the limiting form is inde-
pendent of the particle-size distribution only in the high-frequency
limit. Care must be taken to reduce (or to account for properly) the
effect of ohmic drop in the porous electrode when making these
measurements, and also to avoid the problems of the resolution of
the diffusion impedance when there is overlap from the interfacial
impedance.

If one wants to try to fit the impedance of a porous electrode over
the entire frequency range to try to gather information about the
solid-phase diffusion coefficient and the slope of the OCP, detailed
information about the particle-size distribution is necessary.
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